81 research outputs found

    Benefits and trade-offs of optimizing global land use for food, water, and carbon

    Get PDF
    Current large-scale patterns of land use reflect history, local traditions, and productioncosts, much more so than they reflect biophysical potential or global supply anddemand for food and freshwater, or—more recently—climate change mitigation. Wequantified alternative land-use allocations that consider trade-offs for these demandsby combining a dynamic vegetation model and an optimization algorithm to determinePareto-optimal land-use allocations under changing climate conditions in 2090–2099and alternatively in 2033–2042. These form the outer bounds of the option spacefor global land-use transformation. Results show a potential to increase all threeindicators (+83% in crop production,+8% in available runoff, and+3% in carbonstorage globally) compared to the current land-use configuration, with clear land-use priority areas: Tropical and boreal forests were preserved, crops were produced intemperate regions, and pastures were preferentially allocated in semiarid grasslands andsavannas. Transformations toward optimal land-use patterns would imply extensivereconfigurations and changes in land management, but the required annual land-usechanges were nevertheless of similar magnitude as those suggested by established land-use change scenarios. The optimization results clearly show that large benefits couldbe achieved when land use is reconsidered under a “global supply” perspective with aregional focus that differs across the world’s regions in order to achieve the supply ofkey ecosystem services under the emerging global pressures

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services

    Get PDF
    Land-use models and integrated assessment models provide scenarios of land-use and land-cover (LULC) changes following pathways or storylines related to different socioeconomic and environmental developments. The large diversity of available scenario projections leads to a recognizable variability in impacts on land ecosystems and the levels of services provided. We evaluated 16 projections of future LULC until 2040 that reflected different assumptions regarding socioeconomic demands and modeling protocols. By using these LULC projections in a state-of-the-art dynamic global vegetation model, we simulated their effect on selected ecosystem service indicators related to ecosystem productivity and carbon sequestration potential, agricultural production and the water cycle. We found that although a common trend for agricultural expansion exists across the scenarios, where and how particular LULC changes are realized differs widely across models and scenarios. They are linked to model-specific considerations of some demands over others and their respective translation into LULC changes and also reflect the simplified or missing representation of processes related to land dynamics or other influencing factors (e.g., trade, climate change). As a result, some scenarios show questionable and possibly unrealistic features in their LULC allocations, including highly regionalized LULC changes with rates of conversion that are contrary to or exceed rates observed in the past. Across the diverging LULC projections, we identified positive global trends of net primary productivity (+10.2 % ± 1.4 %), vegetation carbon (+9.2 % ± 4.1 %), crop production (+31.2 % ± 12.2 %) and water runoff (+9.3 % ± 1.7 %), and a negative trend of soil and litter carbon stocks (−0.5 % ± 0.4 %). The variability in ecosystem service indicators across scenarios was especially high for vegetation carbon stocks and crop production. Regionally, variability was highest in tropical forest regions, especially at current forest boundaries, because of intense and strongly diverging LULC change projections in combination with high vegetation productivity dampening or amplifying the effects of climatic change. Our results emphasize that information on future changes in ecosystem functioning and the related ecosystem service indicators should be seen in light of the variability originating from diverging projections of LULC. This is necessary to allow for adequate policy support towards sustainable transformations

    Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions

    Get PDF
    Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland–grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-the-art dynamic global vegetation model with a detailed representation of croplands and carbon–nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47 Pg C a−1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39 % of mean ELUC. Carbon stocks at the end of the 20th century vary by ±11 Pg C for vegetation and ±37 Pg C for soil C due to the choice of LUC reconstruction, i.e. around 3 % of the respective C pools. Accounting for sub-grid (gross) land conversions significantly increased the effect of LUC on global and European carbon stocks and fluxes, most noticeably enhancing global cumulative ELUC by 33 Pg C (1750–2014) and entailing a significant reduction in carbon stored in vegetation, although the effect on soil C stocks was limited. Simulations demonstrated that assessments of historical carbon stocks and fluxes are highly uncertain due to the choice of LUC reconstruction and that the consideration of different contrasting LUC reconstructions is needed to account for this uncertainty. The analysis of gross, in addition to net, land-use changes showed that the full complexity of gross land-use changes is required in order to accurately predict the magnitude of LUC change emissions. This introduces technical challenges to process-based models and relies on extensive information regarding historical land-use transitions

    Estimating the Global Influence of Cover Crops on Ecosystem Service Indicators in Croplands With the LPJ‐GUESS Model

    Get PDF
    Cover crops (CCs) can improve soil nutrient retention and crop production while providing climate change mitigation co-benefits. However, quantifying these ecosystem services across global agricultural lands remains inadequate. Here, we assess how the use of herbaceous CCs with and without biological nitrogen (N) fixation affects agricultural soil carbon stocks, N leaching, and crop yields, using the dynamic global vegetation model LPJ-GUESS. The model performance is evaluated with observations from worldwide field trials and modeled output further compared against previously published large-scale estimates. LPJ-GUESS broadly captures the enhanced soil carbon, reduced N leaching, and yield changes that are observed in the field. Globally, we found that combining N-fixing CCs with no-tillage technique could potentially increase soil carbon levels by 7% (+0.32 Pg C yr1^{−1} in global croplands) while reducing N leaching loss by 41% (−7.3 Tg N yr1^{−1}) compared with fallow controls after 36 years of simulation since 2015. This integrated practice is accompanied by a 2% of increase in total crop production (+37 million tonnes yr1^{−1} including wheat, maize, rice, and soybean) in the last decade of the simulation. The identified effects of CCs on crop productivity vary widely among main crop types and N fertilizer applications, with small yield changes found in soybean systems and highly fertilized agricultural soils. Our results demonstrate the possibility of conservation agriculture when targeting long-term environmental sustainability without compromising crop production in global croplands

    Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa

    Get PDF
    Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. Changing practices such as reducing tillage, fertilizer use, or cover crops are expected to enhance soil organic carbon (SOC) storage, with climate change mitigation co-benefits, while increasing crop production. However, the quantification of cropland management effects on agricultural ecosystems remains inadequate in this region. Here, we explored seven management practices and their potential effects on soil carbon (C) pools, nitrogen (N) losses, and crop yields under different climate scenarios, using the dynamic vegetation model LPJ-GUESS. The model performance is evaluated against observations from two long-term maize field trials in western Kenya and reported estimates from published sources. LPJ-GUESS generally produces soil C stocks and maize productivity comparable with measurements and mostly captures the SOC decline under some management practices that is observed in the field experiments. We found that for large parts of Kenya and Ethiopia, an integrated conservation agriculture practice (no-tillage, residue and manure application, and cover crops) increases SOC levels in the long term (+11 % on average), accompanied by increased crop yields (+22 %) in comparison to the conventional management. Planting nitrogen-fixing cover crops in our simulations is also identified as a promising individual practice in eastern Africa to increase soil C storage (+4 %) and crop production (+18 %), with low environmental cost of N losses (+24 %). These management impacts are also sustained in simulations of three future climate pathways. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates

    Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    Get PDF
    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics
    corecore